
Print Doc Movicon

Table of Contents

1. WWB.NET LANGUAGE .. 1

1.1. PREFACE ... 1
1.2. INTRODUCTION ... 1

2. BASIC SCRIPT IN PROJECT ... 3

2.1. WINWRAP BASIC LANGUAGE ... 3
2.2. BASIC SCRIPT AS RESOURCES .. 4
2.3. BASIC SCRIP IN PROJECT .. 6
2.4. CODE IN BASIC SCRIPTS AND IN SYMBOLS .. 6
2.5. BASIC SCRIPT LIBRARIES ... 6
2.6. SUB, FUNCTION, EVENTS, METODS AND PROPERTIES .. 8
2.7. SERVER-SIDE SCRIPT .. 10
2.8. BASIC SCRIPT VARIABLES .. 12
2.9. WWB.NET™INTO OBJECTS .. 16
2.10. EVENT MANAGER .. 17

3. BASIC SCRIPT EDITOR... 19

3.1. BASIC SCRIPT EDITOR .. 19
3.2. BASIC SCRIPT TOOLBAR .. 20
3.3. BASIC SCRIP DEBUG .. 21

4. BASIC SCRIPT PROPERTIES .. 23

1

1.

All the information contained in the Platform.NExT documentation is based on the

assumption that:

 Windows refers to the trademark registered by Microsoft inc. in Windows 7, Windows 8

and Windows 10 in 64 bit versions

 Platform.NExT refers to the supervision system developed by Progea and is

protected by the international Copyright

 WWB.NET refers to the WinWrap.NET™ component by Polar Engineering integrated in

Platform.NExT, compatible with the Microsoft VB.NET language.

 Ms Access and SQL Server refer to the Microsoft inc. trade mark

 Any other product or brand mentioned is covered by Copyright on behalf of its

owner

Warning: The use of script code in Movicon projects is subject to

a LIMITED WARRANTY. The User has complete freedom to

manage script when using events and methods of the product

and of third party components. However Progea may not be able

to completely guarantee the correct behaviour of the product in

the event of using script code in properties or specific events or

methods. Therefore Users are strongly advised to always refer to

the documentation whenever possible and take preventive

measures by checking that the code they intend to use functions

correctly. Nevertheless Progea provides a LIMITED WARRANTY

for those project functionalities that use VB.NET.

Platform.NExT Basic Script Language Programming Guide Contents

The contents of the compatible WWB.NET™ Basic Scripts (Visual Basic.NET)

programming contents provide developers with all the information needed to create

WWB.NET™ "Basic Script" routines.

This guide comes in two parts. The first part relates to the specific instructions inherent

to command, methods and API functions for Platform.NExT. The second part contains

the syntaxes of standard compatible WWB.NET™ instructions, and is also a part of the

"WinWrap Basic Language" guide (Copyright Polar Engineering) incorporated in

Platform.NExT™.

2

3

2.

Platform.NExT integrates a WinWrap Basic software component that allows routines to

be edited in Basic language within the application.

Some of the main WinWrap Basic features are listed below:

 creates routines WWB.NET language which is compatible with BASIC

code (Beginners All-purpose Symbolic Instruction Code)

 extends instructions sets with customized functions methods

 creates dialog boxes by using the Windows standard controls (buttons,

checkboxes, groupboxes, listboxes, option buttons, images and text

boxes)

 allows references to the assemblies to be inserted and which have

been installed with the 4.5.2 framework or developed by starting from

framework.

WWB.NET Support

The WWB.NET is the predefined language which is enabled through the '#Language

"WWB.NET" directive inserted for default at the start of a script resource. This permits

direct access to the .NET assemblies with VB code. The dialog window used for adding

reference objects to be used in the code proposes a list of all the selectable assemblies.

The example code assumes that you have added a reference to the

System.Windows.Forms assembly:

'#Reference #System.Windows.Forms, Version=2.0.0.0, Culture=neutral,

PublicKeyToken=b77a5c561934e089, processorArchitecture=MSIL

'#Language "WWB.NET"

Dim WithEvents t As System.Windows.Forms.Timer

Sub Main

t = New System.Windows.Forms.Timer

t.Interval = 1000

t.Enabled = True

Wait 1

End Sub

Private Sub t_Tick(ByVal sender As Object, ByVal e As System.EventArgs) Handles

t.Tick

Debug.Print Now

End Sub

A series of new instructions to render the code compactible to VB.NET programming

has been provided especially for this purpose.

4

Restrictions:

 The signatures of the routines in the objects cannot be renames such as would be

allowed with the .NET programming. Le firme delle routine negli oggetti non possono

essere rinominate così come consentirebbe la programmazione .NET

 Not more than one event can be linked to the same procedure using a list of "Handles"

 Variable Script Events cannot be managed in WWB:NET scripts

 In WinWrap Basic version 9, the basic script is single thread and the script code must be

executed from the thread that created it. For example, a .NET delegate can not be

passed to an object that manages this delegate in another thread. A good example of

this would be some of the "System.IO.FileSystemWatcher" class functions that create

additional threads for monitoring file modifications. In this case the methods of this

class will not support other thread calls. This is also the case for the

"System.Net.Sockets" class.

 In WinWrap Basic version 9, the basic script do not support nested types, being a type

defined in the ambient of another type. For example, it is not possible to use the

"System.Net.WebRequestMethods.Ftp" functions.

Unicode Support

The code editor consents you to insert strings in Unicode format. Therefore you can

view the Unicode strings in the basic script dialog window or assign Unicode texts to the

project's string variables.

UTF8 or UTF16 Unicode files can be read and/or written by writing one of the two new

"vbUTF8BOM" and "vbUTF16BOM" constants, added for this purpose, in the first

character of a text file in order to determine its code.

Basic Scripts are inserted in the project by inserting it as a new resource. To insert a

new Basic Script resource, first select the desired point on the "Scripts" group tree

structure in the 'Project Explorer Window" where to put it and then click the "New"

button from the contextual menu which opens.

This operation is confirmed by the appearance of the new Basic Script resource in the

group or the point selected in the Resource structure along with the opening of its code

editor window. At this point you can enter the VBA™ code as described in the

paragraphs specifically written for this topic.

The resource can then be assigned a Name by using clicking on it and typing in the

name to replace the temporary one.

A Basic Script resource must contain the Main (Sub Main) procedure inside. The

instructions contained in this subroutine will be executed when the basic script is

launched from the project's logic. At the end of the subroutine, without any

programmed loop cycles, the basic is terminated and made ready for the next call.

The Main procedure does not have configurable parameters but a parameter can be

associated the moment the Basic Script is called. In the command that calls the Basic

Script you should find a parameter that can contain several arguments separated by a

separator character. The StartupContext.Parameter() function in the basic script can be

used for reading the vlaue of the parameter with which the basic script was

5

called. The vb.net “split” function can then be used to read each argument by passing

the character used as the separator.

After a Basic Script resource has been put into execution for the first time, the resource

will remain active after the Sub Main() has terminated. Therefore any variables referred

to within the resource will be counted for license purposes. If you wish to terminate the

execution of a Basic Script completely, you will need to use "Stop" command available

in the Platform.NExT "Command List".

The stop command of a basic script resource unloads only those basic

resources which are being run in separate threads from memory. The other

basic script resources being run in the same thread are only stopped. As a

consequence of this, the "Unloading" event is no longer executed following a

stop command for those basic script resources which are not in separate

threads. In addition to this the variables used by the basic script always remain

in use once the basic script has been run at least once.

A Basic Script resource introduced into the project can be put into execution in various

ways according to what is required. The following paragraphs illustrate these

methodologies.

Execute on command

Execute on command can be easily set by means of using object, menu or resource

command lists that provide this possibility.

For example, if you wish to associate a Basic Script routine execution to a button, go to

“Common Property Editor”->"Commands"->"Scripts" property and select the Basic

resource desired among those proposed on the list referring to the ones introduced,

and then define the relevant properties as desired.

The execution on command of a Basic Script can also be established from "Events"

resource, whereby the basic routine will be executed upon the occurrence of a

determined event and not by a operator command.

The execute script command modes are:

 Normal: this is the predefined value, the script is executed in asynchro mode in respect

to the call.

 Synchro: the script is executed in sychro mode, the call waits until the execution is

completed before taking control (the debug is disabled in this mode)

 Shared:The script shares the same execution thread of the other scripts that have been

started up in the same way. This consents a more limited use of the machine's

resources

 Stop: the script is unloaded from memory

Execute at startup

A Basic Script routine can automatically be started up at project runtime. In order to

use this functionality, you need to access the project's "Startup Script List" property

settings.

The Basic Script resource must be selected from those previously inserted in the project

using the selection window.

6

You can use Basic Script routines inside projects in different circumstances and

modalities.

It is best to use them in those circumstances where the same operations are not

available with other resources or methods: execution/animation properties of symbols,

Events and Schedulers for example. The unconditional use of the basic scripts in

projects is very handy in the project design time phase but may slow down project

execution and consume more of the project's resources.

The basic code can be used in more areas of the project: as resource, directly in the

execution properties of drawing objects, as codes associated to the events of objects

(alarms, drawings or symbols), in screens.

These functionalities are discussed in more detail in the relating sections.

There is a fundamental difference between the functioning of the Basic Script resources

and the codes which are inserted inside symbols, screens and alarms. The "Sub Main"

must exist in Basic Scripts which is executed when called by a basic script. However,the

"Sub Main" does not exist in symbols (or screens or alarms), where codes are managed

exclusively based on events (SymbolLoading, Click, etc.) which are available in the codes

and which were inserted by the programmer. Platform.NExT calls this events only when

the symbol (or screen) is active and therefore when the screen is loaded into ram.

In addition to the basic functions provided by WinWrap Basic, you can use a series of

supplementary functions inside the Basic Scripts which belong to the Movicon libraries

to enable project interaction. For example these functions can be used for reading and

writing Platform.NExt variables in the Address Space, executing page changes,

interaction with the Platform.NExT symbol properties, and much more. The Movicon

function libraries are called Basic Script Interface Libraries, and each interface has a

collection of sets of specified functions for specific project components.

There are a vast number of Platform.NExT basic interfaces and the list of functions in

these libraries can be accessed with the "Browse" button from the basic tool bar (which

is available after the a basic code, of any component, has been opened):

7

The window which opens shows the name of the interface in the "Data Type" box and

the methods and properties relating to that interface are listed in the

"Methods/Properties" list box:

Browse window Basic scripts functions

Another interface can be selected by using the "Data Type" list box.

To get a function's help just select the function and click the question mark if found in

the functions' Browse window, or if inside a basic code just select the function and click

the F1 key. The various fields in the Browse window mean:

Back

Returns one step back on the libraries hierarchy scale. Some libraries are set with

objects which methods and properties are associated to, for instance when displaying

the property of an object and clicking on the back button should return you back to the

list of objects set in the library.

Paste

Copies the contents of the box at the side, in the point where the cursor is situated in

Script's editor window. If the command is disabled indication will be given by telling you

it is impossible to copy the contents in the position indicated by the cursor.

Close

Closes the browse window and the Script's editor returns active.

Library

Allows you to select one of the library proposed by the list. When ActiveX/OCX have

been added by using the references, these will also be on the list.

Data Type

Allows you to select a data type from the list proposed. The list refers to the library

selected in the Library box.

Methods/Properties

Allows you to select a method or a property from the list proposed. The list refers to the

data type selected in the Data Type box.

8

?

Accesses the help of the property or method selected in the box at the side. Some

external libraries, not setup by Progea and enabled through the references, do not

install their help files.

Parameters

This displays any eventual list of parameters set for the method selected in the Data

Type box.

Routines can be created in basic scripts which are basically portions of code enclosed in

a block and come in two types:

 Sub

 Function

The difference between these two types or routines is very slight. Both can be called by

parameter passing. The difference of the "Function" compared to the "Sub" is that is

can return a value type set by the programmer (Bool, Int, String, etc.).

Example 1:

The Sub Test is called inside the Sub Main of a Basic Script:

Sub Main

Call Test()

End Sub

Sub Test()

MsgBox("Test Sub", vbInformation + vbOkOnly,GetProjectTitle)

End Sub

Example 2:

The Function Test is called inside the Sub Main of a Script and the key pressed by the

user in the MsgBox is put on log:

Sub Main

Debug.Print Test()

End Sub

Function Test() As String

If MsgBox("PTest Function",vbInformation + vbOkCancel,GetProjectTitle) = vbOK Then

Test = "OK"

Else

Test = "Cancel"

End If

End Function

9

The routines described above can be called by other routines, creating nested calls

between them. There must always be a "Sub Main" in the Basic Script Resource which

is the routine automatically executed by the Basic Script when run. However, it is the

programmer's job to insert the right codes inside this routine and call any other Sub or

Function they themselves have created. Once all the instructions obtained in the Sub

Main() have been executed, the basic script is terminated and will have to be called

again in order to run it another time. It is also possible to insert loops in the Sub Main()

in order to keep the Basic Script running.

Uses Clause

Function within other scripts can be referenced within scripts.

This is done by using the #Uses clause in the script within which you wish to reference

functions belonging to other script resources.

A syntax example of the #Uses clause:

'#Uses "*General\PublicFunctions"

By using this syntax you will be able to reference the functions contained in the

'PublicFunctions' script resource contained within a folder called 'General'.

In cases where the called script also resides within a different folder, the syntax

in which the #Uses clause will become:

'#Uses "*..\General\PublicFunctions"

where ..\ indicates the root.

Events

There are Sub routines provided by the system (Platform.NExT or any inserted ActiveX

component) which are automatically called by the system at the forefront of certain

events. These routines, which are actually called "Events", can be inserted in the script

and it is up to the programmer to add the desired codes inside them.

Example:

When the following code is inserted inside the a rectangle design's script, a MsgBox

with the word "Click" will appear every time the rectangle is clicked on with the mouse:

'#Language "WWB.NET"

Public Sub Control_MouseUp(ByVal sender As Object, ByVal e As

System.Windows.Input.MouseButtonEventArgs) Handles Control.MouseUp

MsgBox("Hello!",vbInformation, "Platform.NExT")

End Sub

10

In this case the Public Sub Control_MouseUp() is an event triggered by the system when

performing a Mouse Up on the rectangle, while its internal code must be inserted by the

programmer.

A series of events made available by the system can be selected within basic code of

screen symbols and objects. These events exclusively concern the component in which

the code is being edited being the events in question which regard those triggered by

the component. These events are listed in the "Proc" list when the "(Control)" item is

selected in the "Object" list as shown in the image above.

Methods and Properties

Those functions that can be inserted from the Platform.NExT basic interface can be

exposed as "Methods" and "Properties". The properties identify the characteristics of the

object in question, for example its color and title. The method executed a function of

that object.

The code run on the Server side is executed on the pc in which the Server has been

started up (independently from the fact that it has been started up on the client as

well). To edit the script code on server side, you will need to enter the code within the

Tags, as events generated by the system or as custom methods. The Server side code is

loaded upon initialization of the tag in which the script is defined.

When the Tag's code has been set with a breakpoint, a winwrap debug

window will open at Server startup even when the method has not yet been

invoked.

Server-side Variable Method

Methods for variables can be edited in Movicon Next. This is done by selecting the

variable within the Address Space and opting the "Script Explorer" window.

Sub-routines can be created with input parameters.

This method can also be called from the Client after starting up the server side of the

project in which the method has been defined by dragging the method onto a client

page button for example.

The same result can be achieved by adding a "Call Method" command to the client

button and selecting the method to be called in the "OPC UA Browser" card.

The eventual parameters will be displayed in a window after the variable's method has

been dragged from the server window onto the button to which the "Call Method"

command is to be applied.

As an alternative, by using the "OPC UA Browser" card with the "Data Settings" button

you will be able to set the parameter's value.

While associating the method to the button you will be asked to set the method with a

value if an input parameter exists.

If you come across an input parameter during the operation in order to associate the

method to the button, you will be asked to set a value to associate to the button.

These routines are executed within the server context.

11

Warning! A syntax will nevertheless be requested with the

"Method" prefix added to the name of the routine that has been

created.

You can use the "ServerScriptManager.Value" property to read and

write the value of the same variable in the method. While the

ServerScriptManager.GetTag(“NomeVar”).value function is used to

access another variable.

The variables can then be defined as method type (as data type) in relation to a driver

that exposes methods that can be invoked by means of the variable.

Eg:

Public Sub Method_Test()'ByVal par1 As String
 Try
 Dim path As String = "c:\temp\MyTest.txt"
 Dim fi As FileInfo = New FileInfo(path)

 If fi.Exists() Then
 fi.Delete()
 End If

the following instruction writes a message in the Log file:

 debug.print "Write text in the file"
 'Create the file.
 Dim fs As FileStream = fi.Create()
 Dim info As Byte()
 info= New UTF8Encoding(True).GetBytes("Write text in the
file")
 'Add some information to the file.
 fs.Write(info, 0, info.Length)
 fs.Close()
 'Open the stream and read it back.
 Dim sr As StreamReader = fi.OpenText()
 sr.Close()
 Catch ex As System.Exception
 Debug.Print "VarBoolean variable Test method error: " &
ex.Message
 Finally
 End Try
End Sub

Server-side variable events

You can also find some events in the variable which can be used by the end user:

ServerScriptManager exposes the Init, Terminate and DoEvents events while the

AnalogItemState exposes the StateChanged event. For further information please refer

to the topic on API Basic Script .

Using Array variables

The elements of array variables can be accessed from within the server's script. The

syntax used to do this is:

ServerScriptManager.GetTag("Tag_Array1").Value(0)

12

However, you must be careful when writing single array elements as the Server will not

notify this change to any connected Clients. In order to make sure that the notification

takes place properly, you will need to update the whole array variable completely. The

best thing to do would be to copy the array in the script's temporary support variable,

modify it and then recopy the temporary variable in the server's array variable. For

example:

Public Sub AnalogItemState_StateChanged(ByVal context As Opc.Ua.ISystemContext,

ByVal node As Opc.Ua.NodeState, ByVal changes As Opc.Ua.NodeStateChangeMasks)

Handles AnalogItemState.StateChanged

 Dim appArray() As Single

 appArray() = ServerScriptManager.GetTag("Tag_Array1").Value

 appArray(0) = 99

 ServerScriptManager.GetTag("Tag_Array1").Value = appArray()

End Sub

PlatformNExt Address Space variables and local Basic Script variables can be used in the

Platform.NExT Basic Scripts. The Address Space tags have globalized use the project

and the local Basic Script variables are only visible within Basic routines and are

destroyed once the Basic Script has terminated. In addition it is also possible to use the

Client's “Local” and “System” variables.

The project variables (Platform.NExT Address Space) can be directly used with their

name, or by using the "ScriptDocument.GetVariableValue()”, “ScriptDocument

.SetVariableValue()” functions with a Script resource, or with the corresponding

"Document.GetVariableValue()”, “Document .SetVariableValue()” functions for code

edited at screen object level.

The variables internal Basic Scripts have priority over those of the

project. Meaning that when using the name of a project variable directly in

the basic script code where a variable already exists with the same name,

this will be ignored and the already existing one will be set or read. In this

case you will have to use the GetVariableValue(), SetVariableValue() basic

functions.

Bit type variables, when used directly with their name, are converted into boolean (true

or false). This means that a project variable with value "1" will be read as a "true"

variable inside the Basic Script and therefore with a numeric value equal to "-1". The "0"

value is interpreted as "false" by the Basic Script which will always be a numeric value

equal to "0". This mechanism also goes for both the reading and writing of bit variables

inside Basic Scripts. The GetVariableValue() and SetVariableValue() basic script functions

can always be used to obviate this mechanism. In this way the function's return value

will always be the numeric value of the bit, "1" and "0", and not the boolean value.

Example:

When reading the bTest variable declared in the Platform.NExT DataBase as bit and set

to "1", the result will be:

13

Sub Main Handles .Main

Debug.Print bProva 'Risultato = -1

Debug.Print ScriptDocument.GetVariableValue("bProva") 'Risultato = 1

End Sub

Variables without sign

The WinWrap does not provide the use of variables without sign. Therefore in order to

use a Address Space WORD (without sign) type or DWORD (without sign) variable type

in the Basic Script it must be converted to avoid causing overflow errors. Overflow error

occur when the variable used in the script exceeds the INT type value (ie. 32767 for one

Word) because the basic script engine does not manage variables without sign. To void

this problem a UInt32 variable type is always passed to the WinWrap as Long.

In cases for variables contained inside a folder, for example if there is a "Var1" variable

in the "F1" folder, the direct notation from script to refer to this variable would be:

"F1_Var1"

Based on the script syntax, it isn't possible to differentiate the variables contained in a

folder from those that have names beginning with the same name of the folder.

For example "F1\Var1" and"F1_Var1" would both be referred with the direct "F1_Var1"

notation.

Therefore great care must be taken to avoid creating overlaps such as these or

otherwise indirect notation should be used to avoid misinterpretation:

ScriptDocument("F1\Var1") for the variable inside the folder and

ScriptDocument("F1_Var1") for the variable in the root.

Array Variables

In cases where Array variable types are used, each array element can be accessed by

specifying its number between rounded brackets by using direct tag access syntax. For

example, let's suppose that we have created the 'var_01' array tag type in the server's

address space, in order to access the tag's elements we would use the following syntax:

Var_01(0) = 1

Var_01(1) = 2

However, direct syntaxes can only be used in script on the Client side and not in that of

the Server side.

Despite this, it is also possible to access Array elements using script functions with the

following syntax:

Script on Client side:

ScriptDocument.GetVariableValue("Var_01")(0) = 1

ScriptDocument.GetVariableValue("Var_01")(1) = 2

Script on Server side:

ServerScriptManager.GetTag("Var_01").Value(0) = 1

ServerScriptManager.GetTag("Var_01").Value(1) = 2

However, please note that even though the script functions are used to write an Array

element, it will not be notified to the Client which will continue showing the old

value. In order for the Server to notify the Client of this change, the entire Array variable

will have to be set. Therefore, you will need to use a temporary variable within the

14

script as in the following example where “Folder1\Tag_ArrayFloat” is the Server's Array

variable:

'#Language "WWB.NET"

Option Explicit

Sub Main Handles .Main

 Dim myArr() As Single

 Dim nLen As Integer

 Dim iCounter As Integer

 nLen = UBound(Folder1_Tag_ArrayFloat)

 ReDim myArr(nLen)

 myArr = Folder1_Tag_ArrayFloat

 For iCounter = LBound(myArr) To UBound(myArr)

 myArr(iCounter) = myArr(iCounter) + 1

 Next iCounter

 Folder1_Tag_ArrayFloat = myArr

End Sub

Structure Variables

When using structure variables directly, the delimiter character to use between the

name of the variable and the member is the dot ("."). When using the GetVariableValue()

and SetVariableValue() functions instead, the separation character to use between the

variable name and the member is the colon (":"). For example, if we define the

“TagStruct01” structure type variable with a prototype which has “Member_1” and

“Member_2” members, to access the variable the syntax will be:

 Direct access (Client side script only): TagStruct01.Member_1 = 1

 Indirect access (by means of Client side functions):

ScriptDocument.SetVariableValue(“TagStruct01:Member_1”, 1)

 Indirect access (by means of Server side functions):

ServerScriptManager.GetTag("TagStruct01:Member_1").Value = 1

Attention! When using the direct syntax, only the simple members defined

in the prototype's rool can be accessed and not those members defined in

the prototype's folder or membered defined as prototype (nested

structures). In this case, it will be necessary to use the script function to

access nested members.

For example, if we define a “TagStruct01” variable structure type with a prototype which

has a “Member_1” member in the prototype's Folder1, the syntax to access the variable

will be:

ScriptDocument.SetVariableValue(“TagStruct01:Folder1\Member_1”, 1)

ServerScriptManager.GetTag("TagStruct01:Folder1\Member_1").Value = 1

Similarly, when having defined the “TagStruct01” variable structure type with a

prototype that has a “MemberStruct” member that has a “Member_1” member in the

nested prototype's Folder1, the syntax to access the variable will be:

ScriptDocument.SetVariableValue(“TagStruct01: MemberStruct \Folder1\Member_1”, 1)

ServerScriptManager.GetTag("TagStruct01: MemberStruct \Folder1\Member_1").Value =

1

15

Variables inside Folders

In cases accessing variables contained inside folders, the “_” character must be used as

a folder and variable separator or folder and folder separator. When using the

GetVariableValue() and SetVariableValue() functions to access variables in folders the “\”

character must be used as the separator. For example, when accessing the "Var1"

variable inside the "Folder1" Folder, the following syntax must be used:

 Direct access:

Folder1_Var1 = 1

 Indirect Access (by use of functions)

ScriptDocument.SetVariableValue(“Folder1_\Var1”, 1)

Or with more folder levels:

 Direct access:

Folder1_Folder2_Folder3_Var1 = 1

 Indirect access (by use of functions)

ScriptDocument.SetVariableValue(“Folder1\Folder2\Folder3\Var1”, 1)

When accessing tags directly you need to make sure that you don't define the names of

folders and variables that might result as homonyms. For example, If you define

“Motor1” variable inside the “Machine1” folder in the root of the address space, and a

second variable directly in the address space's root as “Machine1_ Motor1”, the script

intellisense will have problems distinguishing them from each other because the syntax

you would have to use to access them both would be the same: “Machine1_

Motor1”. In situations like this, it would be better to use the GetVariableValue() and

SetVariableValue() in order to make distinctions between the two tags.

TimeStamp and Quality

Variable TimeStamps and Qualities can be read using script by using direct

"VarName_Quality" and "VarName_TimeStamp" notation.

Avoid creating variables with the same name of existing variables with the "_quality"

and "_timestamp" suffixes as it may be difficult to distinguish whether the quality of the

variable or the variable with that name is to be referred to. The "GetVariableQuality" and

"GetVariableTimeStamp" functions can also be used to refer to the variable's quality and

timestamp as an alternative to distinguish the differences as described above.

Client system and Local variables

The Client's local and system Tags can be accessed by script code. To access local tags

digit “TemporaryVariables” followed by a dot to open the list of selectable members. To

access system tags digit “SystemVariables” followed by a dot to open the list of

selectable members. For example:

 TemporaryVariables.LocalTag1

 SystemVariables.CurrentUser

Intellisense in Scripts

The Basic Script resources are able to identify the project's variables when written

directly and in those cases where the tag name is written in blue. This comes in handy

16

when using the “CTRL+Space Bar” to open the list of available methods and properties

as well as the project's tags where you will be able to select the name of a tag instead of

having to write it. Therefore when you press the “CTRL+Space Bar” within the script, a

list box will appear like the one below allowing you to scroll and select the tag desired:

Symbols in screens and screens can contain basic script code. Basic codes inserted in

objects are managed differently to those from Basic Script resource, whose execution is

controlled in the project's logic. A series of events have been provided in the project

that when selected and then inserted inside the basic script editor allow you to insert

codes. The basic routines in these events will be executed when the events are

triggered during project runtime,

Each object may have different properties, methods and events according its function

type. Please refer to the lists in the specific paragraphs to get further details on these.

It is important to remember that the code associated to an event of an object

is executed only when the object is loaded into memory and then managed by

17

Movicon Next. For instance, a drawing associated with a code is executed only

when the screen container is loaded.

Please keep in mind that the codes inside drawings are not initialized straight away

when the screen page is loaded but only when needed. If a symbol contains

the "Loaded" event Movicon NExT is obligated to initialize the basic script code

contained in that drawing straight away. This means that page loading is quicker when

the drawings associated to it do not contain the "Loaded"" event. However this does

not mean that the "Loaded" event should not be used altogether but only when

necessary. The project variables (the Platform.NExT Address Space) can be used directly

with their name or by using the appropriate functions from the

"Document.GetVariableValue()”, “Document .SetVariableValue()” for the code edited at

screen object level.

The script codes of drawings are loaded only when they are needed and not

when the page is being loaded.

Some framework classes that can be used within the script editor allow events to be

handled as shown in the examples below:

The Timer class:

'#Language "WWB.NET"

Imports System.Windows.Forms

Dim WithEvents t As System.Windows.Forms.Timer

Sub Main

 t = New System.Windows.Forms.Timer

 'Preset Timer

 t.Interval = 1000

 'Start/Stop Timer

 If t.Enabled Then

 t.Enabled = False

 Else

 t.Enabled = True

 End If

End Sub

 'This event is triggered at the end of each set interval

Private Sub t_Tick(ByVal sender As Object, ByVal e As System.EventArgs) Handles t.Tick

 ScriptDocument.SetVariableValue("ActualTime", Format(Now, "dddd dd-mm-yyyy") &

vbLf & Format(Now, "hh:nn:ss"))

End Sub

FileSystemWatcher class is another example which handles an event that is triggered

every time a file, that it is monitoring, is modified.

'#Language "WWB.NET"

Imports System.IO

Sub Main Handles .Main

Try

18

 Dim path As String= "c:\Test"

 'WatchTest.Log è il file che viene monitorato

 Dim watch As New FileSystemWatcher(path, "WatchTest.Log")

 'Add an event handler for the "Change" event provided"

 AddHandler watch.Changed, AddressOf watch_Changed

 watch.EnableRaisingEvents = True

 'the loop keeps the script active and enables the event to be triggered that in cases of

the FileSystemWatcher is run from a distinct thread by the caller

 Do

 DoEvents

 Loop Until ScriptDocument.IsInStoppingMode

Catch ex As System.Exception

 Debug.Print ex.Message

Finally

End Try

End Sub

Private Sub watch_Changed(ByVal sender As Object, ByVal e As System.EventArgs)

 Dim actualVal As Integer

 'VariableChange will be the variable that counts the number of changes

 actualVal= ScriptDocument.GetVariableValue("VariableChange")

 ScriptDocument.setVariableValue("VariableChange",actualVal+1)

End Sub

19

3.

The basic script editor is composed of a window containing an area with a white

background in which you can edit codes, plus a series of commands as described below.

The window can be resized with the possibility to open more than one window at the

same time so that Copy&Paste operations from different projects can be performed

faster. To open the editor simply click on the Basic Script resource.

The script code editing of objects and screens is done using the Platform.NExT "Script

Explorer" window. The contents of this window change dynamically based on the

component selected, by show its associated script code.

Both the editing windows shown above provide two drop-down lists, "Object:" and

"Proc:".

The "Object:" list displays a list of basic set objects in Platform.NExT which corresponds

to "(General)", "Control" and "ScriptDocument". The selection of one object in

respect to another changes the list of procedures in the "Proc:" list available for that

specific object.

"(General)" : identifies the procedure programmed for that specific object and the list

may change according to the object selected on screen.

"Document": this is an interface that refers to the screen. If for example the

"VariableChanged" event is used, variable changes will be notified on the screen.

20

"Control": identifies a screen object's events and is only available when the code

associated the screen object is being edited.

"Entity": identifies the control as framework object.

"Parent": this is an interface that refers to the project.

A list of events available in the "Proc:" list is displayed according to the selection made

in the "Object:" list.

When opening the basic script code edit window of a resource or from the "Script

Explorer", the Basic Script tool bar will be displayed at the top.

Some commands can also be executed from the "Debug Menu".

The keys' functions have been listed below::

Browse

This command is used for accessing the list of functions and properties available in

the basic script. The window which appears is called Browse function.

Start/Resume

This command starts the basic script. If the code is referred to a project's basic

resource, the contents of the Sub Main procedure are executed. Otherwise, if the

code is referred to an object, it enables the events management in that object. It is

used to run a check on the syntax used in the written code, in cases where it is not

referred to a project resource, which requires the project to be started up in runtime

(eg. to read variables) where the code will be executed as well (eg. to read values from

DB).

Pause

This command pauses the basic script by positioning the cursor on the line being

executed which will automatically be highlighted in yellow.

End

This command aborts the basic script run. The code must be paused beforehand in

order for this command to work.

Break Point

This command inserts or removes a breakpoint on the line in which the cursor is

present. This function is also made available by clicking outside the extreme left

editor window border which coincides with the line in which the breakpoint is to be

inserted. The F9 key can also be used as an alternative. The moment in which the

basic has to execute a line of code which has a break point, the execution will be

automatically placed in pause mode.

21

Quick Watch

This command returns the result of the highlighted function, in a basic script dialog

window or in the debug window (Watch window).

Show Current Statement

This command allows you to position the cursor at the top of the next instruction to

be executed in the routine debug phase.

Step Into

This command executes the step into one function at a time, each time it is

pressed.

Step Over

This command steps over one function at a time, each time it is pressed.

Step Out

This command executes the all the functions up to the line in which the cursor is

situated.

Edit UserDialog

This command opens the tool for creating the basic script's dialog window graphics.

When exiting with OK, all that has been created graphically will be translated into

code. When positioning and activating the command on this window all the new

graphics will be reproduced from the translated basic script code.

Edit Module Properties

Platform.NExT allows the complete debugging of the project's basic script logic,

whether being project resources or contents in screen or alarm graphic screens.

In the project design time phase you can debug the Basic Scripts set as Resources only,

but you cannot test the scripts associated to objects as these are managed on event.

However all these scripts can be debugged during the RunTime phase when Break-

Points are inserted into their codes during the programming phase.

Therefore when a script is executed in RunTime, a debug window will open when

the execution stops at a Break-Point so that the script can be executed step by step,

etc, by using the debug bar at the top.

Break-Points become permanent when inserted inside scripts, meaning that

they are saved in the script's properties, and therefore they are also active in

RunTime mode. So for this reason we advise you to insert Break-Points for

carrying out the debug phase only and remove them straight after the test

has been executed.

22

Some basic script functions verified in programming mode may return with

different values when executed in runtime, therefore we advise you to use the

debug in the programming phase to check codes roughly and repeat the test

by executing the project in runtime to get an accurate test.

23

4.

Each "Basic Script" routine inserted as a resource in the "Project Explorer" window can

receive in association Properties to setup how they function during a run. In order to

this just select the "Basic Script" desired and then change its settings through the

Movicon "Properties Window".

General

Cycle Time Tag

This field is used to associate a Tag in which the Basic Script resource's cycle time will be

reported. This value is set in milliseconds and will update when the script has

terminated from being run. However if there is an infinite loop within the Script, the

cycle time value will remain set at zero.

For performance reasons, the Script starts running without waiting until the

Cycle Time Tag has been subscribed to the Server. This may mean that the

Cycle Time Tag may start updating after the Script has gone into execution.

Current Tag Status

This field is used to associate a Tag in which the Script execution state will be

reported. The Script states are managed in bits whereby each Tag bit has the following

meaning:

Bit 0: not used.

Bit 1: Error. The bit changes to True each time the Script goes into error.

Bit 2: not used.

Bit 3: not used.

Bit 4: DoEventing. The bit changes to True each time a DoEvent instruction is run within

the Script.

Bit 5: Starting. The bit changes to True when the Script is in startup mode.

Bit 6: Stopping. The bit changes to True when the Script is in stop mode.

Bit 7: Running. The bit changes to True when Script is running.

For performance reasons, the Script starts running without waiting until the

Cycle Time Tag has been subscribed to the Server. This may mean that the

Cycle Time Tag may start updating after the Script has gone into execution.

Thread Priority

A basic resource can be executed with different priorities: High, normal and low:

Lowest: very low priority

BelowNormal: Less than normal priority

Normal: Normal priority

AboveNormal: higher than normal priority

Highest: maximium priority

24

Force Writing On Server

The property is set to false for default. When set to true, the script will force the writing

of the value of a valuable unconditionally to that of the previous one. This will permit

same value to be rewritten within a tag.

Execution

Stop Command Timeout

The timeout period for the stop command.

Sleep Time

The sleep time is set in milliseconds and is used to lighten the processor's basic script

execution workload. The higher the sleep time, the less the basic script will engage the

processor to execute it. As a consequence the script will take longer to execute.

Connection Settings

Session Name

When specifying a name in this field the Script will run in a different Server connection

session to the one used by the Movicon Client. When the Script runs in a different

session this means that the Server connection parameters will be those defined in the

Script resource. However, if the Script is run in the same session used by the Movicon

Client, the 'Session Name' parameter is left empty and the Server connection

parameters will be the same as those of the Movicon Client which are defined in the

project's 'Connection Settings' properties.

Remove Item Delay

This parameter is only handled when the script's "Session Name" property has been set

and is used to set the delay time in seconds with which to remove the OPC UA

subscriptions of inactive ITEMs.

Remove Item Num.

This parameter is only handled when the script's "Session Name" property has been set

and is used to set the number of inactive OPC Items to be removed at each time

interval.

Only Secure Connections

This parameter is only handled when the script's "Session Name" property has been

set. When this option is enabled only 'secure' Server connections will be allowed.

Fast Sampling Interval

This parameter is only managed when the script's "Session Name" property has been

set. This parameter is used to define the rate in which the active and existing variable is

to be updated. This parameter is passed to the Server, and any eventual Driver, when

the scipt is loaded and the variables go into use. In cases where the script has not been

defined with a session, the one defined at project level will be used and as a

consequence so will the general value set in the 'Fast Sampling Interval'.

Slow Sampling Interval

This parameter is only managed when the script's "Session Name" property has been

set. This parameter is used to define the update rate of a variable that is going out of

use but still exists. This parameter is passed to the Server, and any eventual Driver, when

the script is unloaded. In cases where the script has not been defined with a session,

25

the one defined at project level will be used and as a consequence so will the general

value set in the 'Slow Sampling Interval'

Disable When Not Used

Sets the Tag as "Inactive" when not in use.

Publishing Interval

Nofication time of Tags towards Server.

Debug

Enable Log

Enabling this selection box, an xml file will be created in the script's folder for the Basic

Script routine during runtime. This file will contain printed messages belonging to the

script such Debug.Prints. This file will reaming in use until the script stops running due

to performance reasons.

This file will always be regenerated at startup.

Enable SysLog

when enabling this property, the messages from the Debug.Print function will also be

printed in the project's Historical Log as well.

26

