
Microsoft ADO Tutorial
This tutorial illustrates using the ADO programming model to query and update a data
source. First, it describes the steps necessary to accomplish this task. Then the tutorial is
repeated in Microsoft® Visual Basic®; Microsoft® Visual C++®, featuring VC++ Extensions;
Microsoft® Visual Basic®, Scripting Edition; and Microsoft® Visual J++™, featuring ADO for
Windows Foundation Classes (ADO/WFC).
This tutorial is coded in different languages for two reasons:

?? The documentation for ADO assumes the reader codes in Visual Basic. This makes
the documentation convenient for Visual Basic programmers, but less useful for
programmers who use other languages.

?? If you are uncertain about a particular ADO feature and you know a little of another
language, you may be able to resolve your question by looking for the same feature
expressed in another language.

How the Tutorial is Presented
This tutorial is based on the ADO programming model. It discusses each step of the
programming model individually. In addition, it illustrates each step with a fragment of
Visual Basic code. At the end, it restates and integrates the code fragments as a Visual
Basic example.
The code example is repeated in other languages, however, without the discussion. Each
step in a given programming language tutorial is marked with the corresponding step in the
programming model and descriptive tutorial. Use the number of the step to refer to the
discussion in the descriptive tutorial.
Because this tutorial consists of several small fragments of code, you cannot execute the
code as written.
The ADO programming model is restated below. Use it as a roadmap as you proceed
through the tutorial.
ADO Programming Model with Objects

?? Make a connection to a data source (Connection). Optionally, begin a transaction.

?? Optionally, create an object to represent an SQL command (Command).

?? Optionally, specify columns, tables, and values in the SQL command as variable
parameters (Parameter).

?? Execute the command (Command, Connection, or Recordset).

?? If the command is row-returning, store the rows in a storage object (Recordset).

?? Optionally, create a view of the storage object so you can sort, filter, and navigate
the data (Recordset).

?? Edit the data, either adding, deleting, or changing rows and columns (Recordset).

?? If appropriate, update the data source with changes from the storage object
(Recordset).

?? If a transaction was used, accept or reject the changes made during the transaction.
End the transaction (Connection).

Next Step 1

Step 1: Open a Connection (ADO Tutorial)
You are Here...

?? Make a connection to a data source.

?? Optionally, create an object to represent an SQL query command.

?? Optionally, specify values in the SQL command as variable parameters.

?? Execute the command. If the command is row-returning, store the rows in a storage
object.

?? Optionally, navigate, examine, manipulate, and edit the data.

?? If appropriate, update the data source with changes from the storage object.
Optionally, embed the update in a transaction.

?? If you used a transaction, accept or reject the changes made during the transaction.
End the transaction.

Discussion
You require a means to establish the conditions necessary to exchange data; that is, a
connection. The data source you connect to is specified in a connection string, although the
parameters specified in a connection string may differ for each provider and data source.
The main way ADO opens a connection is with the Connection.Open method. Alternatively,
you can invoke the shortcut method, Recordset.Open, to both open a connection and
issue a command over that connection in one operation. Following is the syntax for each
method in Visual Basic:
connection.Open ConnectionString, UserID, Password, OpenOptions
recordset.Open Source, ActiveConnection, CursorType, LockType, Options
It's helpful to compare these two methods to highlight some useful characteristics of ADO
method operands in general.
ADO provides several convenient ways to specify an operand. For example,
Recordset.Open takes an ActiveConnection operand, which could be the literal string, a
variable representing that string, or a Connection object representing an open connection.
Most methods on an object have properties that can provide an argument if a method
operand is omitted. In the case of Connection.Open, you could omit the explicit
ConnectionString operand and supply the information implicitly by setting the
ConnectionString property to "DSN=pubs;uid=sa;pwd=;database=pubs".
Conversely, the uid and pwd keyword operands in a connection string can set the
Connection object UserID and Password parameters.
This tutorial invokes the Connection.Open method with an explicit connection string. The
data source will be the Open Database Connectivity (ODBC) pubs database, which ships as
a test database with Microsoft SQL Server. (The actual location of the data source—such as
a local drive or remote server—is specified when you define the Data Source Name (DSN).)
connection.Open "DSN=pubs;uid=sa;pwd=;database=pubs"
Next Step 2

Step 2: Create a Command (ADO Tutorial)
You are Here...

?? Make a connection to a data source.

?? Optionally, create an object to represent an SQL query command.

?? Optionally, specify values in the SQL command as variable parameters.

?? Execute the command. If the command is row-returning, store the rows in a storage
object.

?? Optionally, navigate, examine, manipulate, and edit the data.

?? If appropriate, update the data source with changes from the storage object.
Optionally, embed the update in a transaction.

?? If a transaction was used, accept or reject the changes made during the transaction.
End the transaction.

Discussion
A query command requests that the data source return a Recordset object containing rows
of requested information. Commands are typically written in SQL.

1. As mentioned, operands such as a command string can be represented as:
?? A literal string or a variable that represents the string. This tutorial could

query for all the information in the authors table of the pubs database with
the command string "SELECT * from authors".

?? An object that represents the command string. In this case, the value of a
Command object CommandText property set to the command string.
Command cmd = New ADODB.Command;
cmd.CommandText = "SELECT * from authors"

2. Specify a parameterized command string with the '?' placeholder.
The content of an SQL string is fixed. However, you can create a parameterized
command where '?' placeholder substrings can be replaced with parameters when a
command is executed.
You can optimize the performance of parameterized commands with the Prepared
property. You can issue them repeatedly, changing only their parameters each time.
For example, the following command string issues a query for all the authors whose
last name is "Ringer":
Command cmd = New ADODB.Command
cmd.CommandText = "SELECT * from authors WHERE au_lname = ?"

3. Specify a Parameter object. Append it to the Parameters collection.
Each '?' placeholder is replaced by the value of a corresponding Parameter object in
the Command object Parameters collection. Create a Parameter object with
Ringer as the value, then append it to the Parameters collection:
Parameter prm = New ADODB.Parameter
prm.Name = "au_lname"
prm.Type = adVarChar
prm.Direction = adInput
prm.Size = 40
prm.Value = "Ringer"
cmd.Parameters.Append prm

4. Specify and append a Parameter object with the CreateParameter method.
ADO now offers a convenient alternative means to create a Parameter object and
append it to the Parameters collection in one step.
cmd.Parameters.Append cmd.CreateParameter _
 "au_lname", adVarChar, adInput, 40, "Ringer"
However, this tutorial won't use a parameterized command, because you must use
the Command.Execute method to substitute the parameters for the ‘?’
placeholders. But that method wouldn't allow us to specify Recordset cursor type
and lock options. For that reason, use this code:
Command cmd = New ADODB.Command;
cmd.CommandText = "SELECT * from authors"

For your information, this is the schema of the authors table:
Column Name Data Type(length) Nullable
au_id ID (11) no
au_lname varchar(40) no
au_fname varchar(20) no

Phone char(12) no
Address varchar(40) yes
City varchar(20) yes
State char(2) yes
Zip char(5) yes

Contract bit no

Next Step 3

Step 3: Execute the Command (ADO Tutorial)
You are Here...

?? Make a connection to a data source.

?? Optionally, create an object to represent an SQL query command.

?? Optionally, specify values in the SQL command as variable parameters.

?? Execute the command. If the command is row-returning, store the rows in a
storage object.

?? Optionally, navigate, examine, manipulate, and edit the data.

?? If appropriate, update the data source with changes from the storage object.
Optionally, embed the update in a transaction.

?? If a transaction was used, accept or reject the changes made during the transaction.
End the transaction.

Discussion
The three methods that return a Recordset are Connection.Execute,
Command.Execute, and Recordset.Open. This is their syntax in Visual Basic:
connection.Execute(CommandText, RecordsAffected, Options)
command.Execute(RecordsAffected, Parameters, Options)
recordset.Open Source, ActiveConnection, CursorType, LockType, Options
These methods are optimized to take advantage of the strengths of their particular objects.
Before you issue a command, you must open a connection. Each method that issues a
command represents the connection differently:

?? The Connection.Execute method uses the connection embodied by the
Connection object itself.

?? The Command.Execute method uses the Connection object set in its
ActiveConnection property.

?? The Recordset.Open method specifies either a connect string or Connection object
operand, or uses the Connection object set in its ActiveConnection property.

Another difference is the way the command is specified in the three methods:
?? In the Connection.Execute method, the command is a string.

?? In the Command.Execute method, the command isn't visible—it's specified in the

Command.CommandText property. Furthermore, the command can contain
parameter symbols (‘?’) which will be replaced by the corresponding parameter in
the Parameters VARIANT array argument.

?? In the Recordset.Open method, the command is the Source argument, which can
be a string or a Command object.

Each method trades off functionality versus performance:
?? The Execute methods are intended for—but are not limited to—executing commands

that don't return data.

?? Both Execute methods return fast but read-only, forward-only Recordset objects.

?? The Command.Execute method allows you to use parameterized commands that
can be reused efficiently.

?? On the other hand, the Open method allows you to specify the CursorType
(strategy and object used to access the data); and LockType (specify the degree of

isolation from other users, and whether the cursor should support updates in
immediate or batch modes).

?? We advise you to study these options; they embody much of the functionality of a
Recordset.

This tutorial uses a dynamic cursor to batch any changes to the Recordset. For this reason,
use the following:
Recordset rs = New ADODB.Recordset
rs.Open cmd, conn, adOpenDymanic, adLockBatchOptimistic
Next Step 4

Step 4: Manipulate the Data (ADO Tutorial)
You are Here...

?? Make a connection to a data source.

?? Optionally, create an object to represent an SQL query command.

?? Optionally, specify values in the SQL command as variable parameters.

?? Execute the command. If the command is row-returning, store the rows in a storage
object.

?? Optionally, navigate, examine, manipulate, and edit the data.

?? If appropriate, update the data source with changes from the storage object.
Optionally, embed the update in a transaction.

?? If a transaction was used, accept or reject the changes made during the transaction.
End the transaction.

Discussion
The bulk of the Recordset object methods and properties are devoted to examining,
navigating, and manipulating the rows of Recordset data.
A Recordset can be thought of as an array of rows. The row you can examine and
manipulate at any given time is the current row, and your location in the Recordset is the
current row position. Every time you move to another row, that row becomes the new
current row.
Several methods explicitly move or "navigate" through the Recordset (the Move
methods). Some methods (the Find method) do so as a side effect of their operation. In
addition, setting certain properties (Bookmark property) can also change your row
position.
The Filter property can be applied to control rows you can access (that is, which rows are
"visible" to you). The Sort property controls the order in which you navigate the rows of the
Recordset.
A Recordset has a Fields collection, which is the set of Field objects that represent each
field, or column, in a row. Assign or retrieve the data for a field from the Field object’s
Value property. As an option, you can access field data in bulk (the GetRows and Update
methods).
In this tutorial, you will:

?? Assume that telephone numbers in the "415" area code with exchanges starting with
"5", are changing to the mythical area code "777."

?? Set the Optimize property of the Properties collection of the au_lname Field object
to improve the performance of sorting and filtering.

?? Sort the Recordset on each author's last name.

?? Filter the Recordset so the only accessible (that is, "visible") rows will be those
where the author's area code is "415" and exchange begins with "5".

Use the Move methods to navigate from the beginning of the sorted, filtered Recordset to
the end. Stop when the Recordset EOF property indicates you've reached the last row. As
you move through the Recordset, display the author's first and last name and the original
telephone number, then change the area code in the phone field to "777". (Telephone
numbers in the phone field are of the form "aaa xxx-yyyy" where aaa is the area code
and xxx is the exchange.)
rs!au_lname.Properties("Optimize") = True
rs!au_lname.Optimize = TRUE
rs.Sort = "au_lname ASCENDING"
rs.Filter = "phone LIKE '415 5*'"
rs.MoveFirst
Do While Not rs.EOF
 Debug.Print "Name: " & rs!au_fname & " " rs!au_lname & _
 "Phone: " rs!phone & vbCr
 rs!phone = "777" & Mid(rs!phone, 5, 11)
 rs.MoveNext
Loop
Next Step 5

Step 5: Update the Data (ADO Tutorial)
You are Here...

?? Make a connection to a data source.

?? Optionally, create an object to represent an SQL query command.

?? Optionally, specify values in the SQL command as variable parameters.

?? Execute the command. If the command is row-returning, store the rows in a storage
object.

?? Optionally, navigate, examine, manipulate, and edit the data.

?? If appropriate, update the data source with changes from the storage
object. Optionally, embed the update in a transaction.

?? If a transaction was used, accept or reject the changes made during the transaction.
End the transaction.

Discussion
You've just changed the data in several rows of the Recordset. ADO supports two basic
concepts for the addition, deletion, and modification of rows of data.
The first notion is that changes aren't immediately made to the Recordset; instead, they
are made to an internal copy buffer. If you decide you don't want the changes, then the
modifications in the copy buffer are discarded. If decide you want to keep the changes, then
the changes in the copy buffer are applied to the Recordset.
The second notion is that changes are either propagated to the data source as soon as you
declare the work on a row complete (that is, immediate mode) or else all the changes for a
set of rows are collected until you declare that the work for the set is complete (that is,
batch mode). These modes are governed by the CursorLocation and LockType properties.
In immediate mode, each invocation of the Update method propagates the changes to the
data source. In batch mode, each invocation of Update or movement of the current row
position saves the changes to the Recordset, but only the UpdateBatch method
propagates the changes to the data source. You opened the Recordset in batch mode, so
you'll update in batch mode.
Note There is a convenience form of Update in which you apply a change to a field, or an
array of changes to an array of fields, then perform the update, all in one step.
Optionally, you can perform your update in a transaction. In practice, you would use a
transaction to ensure that several related operations that depended on each other either all
occurred successfully, or else were all canceled. In this case, a transaction isn't really
necessary.

Transactions typically allocate and hold limited resources on the data source for long periods
of time. For that reason it is advisable that a transaction exist for as brief a period as
possible. (That's why this tutorial didn't begin the transaction as soon as you made a
connection.)
For the tutorial, bracket your batch update in a transaction:
conn.BeginTrans
rs.UpdateBatch
...
Next Step 6

Step 6: Conclude the Update (ADO Tutorial)
You are Here...

?? Make a connection to a data source.

?? Optionally, create an object to represent an SQL query command.

?? Optionally, specify values in the SQL command as variable parameters.

?? Execute the command. If the command is row-returning, store the rows in a storage
object.

?? Optionally, navigate, examine, manipulate, and edit the data.

?? If appropriate, update the data source with changes from the storage object.
Optionally, embed the update in a transaction.

?? If a transaction was used, accept or reject the changes made during the
transaction. End the transaction.

Discussion
Imagine that the batch update concluded with errors. How you resolve the errors depends
on the nature and severity of the error and the logic of your application. However, if the
database is shared with other users, one typical error is that someone else modifies the field
before you do. This type of error is called a conflict. ADO detects this situation and reports
an error.
In this tutorial, this step has two parts: If there are no update errors, commit the
transaction. This concludes the update.
If there are errors, they will be trapped in an error-handling routine. Filter the Recordset
with the adFilterConflictingRecords constant so only the conflicting rows are visible. The
error-resolution strategy is merely to print the author's first and last names (au_fname and
au_lname). Then roll back the transaction, discarding the successful updates. This
concludes the update.
...
conn.CommitTrans
...
On Error
rs.Filter = adFilterConflictingRecords
rs.MoveFirst
Do While Not rs.EOF
 Debug.Print "Conflict: Name: " & rs!au_fname " " & rs!au_lname
 rs.MoveNext
Loop
conn.Rollback
Resume Next
...
This is the end of the tutorial.

