

Table of Contents

1. SEQUENTIAL LOGIC ... 1

1.1. RUNNING AND STOPPING LOGIC .. 1
1.2. LOGIC FUNCTION BLOCKS AND GATES... 2
1.3. ASSIGNING TAGS ... 3
1.4. EDITING LOGIC .. 3
1.5. LOGIC RESOURCE PROPERTIES ... 3

1

1. Sequential Logic

Sequential Logic Graphics is a sequential logic editor that can be programmed by

inserting logic function block gates to which project Tags can be associated when

consented. Logic editing is done graphically by inserting the logic function block gates

in the editor and then connecting them to each other by using their input and output

connectors. To create a connection simply click on an output connector of a function

block gate (e.g. an "Input" function block gate, etc) and, by keeping the mouse key

pressed down, drag the input connector with the mouse pointer to the gate desired (eg.

a "Or" or "And" gate). The final result can be seen in the below image:

Sequential Logic function in the same way as that of a PLC's. This means that the Input

variables are updated (e.g. those associated to the "Input" and "Compare" function

block gates) at the beginning of a cycle run after which all the logic is processed. The

Output variables are updated at the end of the cycle run (those associated to the

"Output" function block gates).

1.1. Running and Stopping Logic
A Logic resource can be run either by using a command (by button or event) or by

using the Project's "Startup Logics List" containing a list of logic to be run at project

startup. In both cases it is possible to run logic with the following modes:

 Normal: Logic is started and kept running in a continuous cycle. The logic run

can be stopped by using its 'Stop' command otherwise it will be stopped when

the project stops running.

 Synchro: The Logic is run once only then it is stopped automatically. Therefore

only one complete Logic cycle will be run.

 Shared: The logic is run in "debug" mode, meaning that it will be run in

'Normal' mode with the debug window opened for displaying the logic function

blocks edited in design mode. The function blocks will be animated within the

debug window according to the Tag values and resulting logic

2

cominbinations. Closing the debug window will also stop the logic from

running.

 Stop: The logic set in this command will be stopped.

Run Logic as Service

When logic is inserted in the "Startup list", it will also become possible to select the

option to start logic as Windows Service. In this way the selected logic will start when

the PC is started up as Windows Server and therefore processed independently from the

Movicon Client startup command. However, the Logic Service startup will still depend

on the PlatformNExTIOServer service process that needs to be installed as Windows

Service to enable this. For further information about this please refer to the chapter on

"Start as Service". If the service is not installed after the "Start As Service" option has

been checked, the logic will start up with an external "LogicService.exe" process in

respect to that of "Movicon.NExT" process. In addition, when the "Start As Service"

option has been checked, it will not be possible to start logic with the "Shared" mode.

1.2. Logic Function Blocks and Gates
The function blocks that can be used within logic are the following:

Comment

The “Comment” function block is only used for inserting a comment in the logic. The

inserted comment does not have any influence on how the logic is executed.

Input and Output

The Input and Output gates, as indicated by their name, are gates to which the input

Tag and output process are associated. The "output" function blocks activate the

output, by setting the associated Tag , when the input condition is verified as True.

Compare

The “Compare” function block performs a comparison operation between two Tags or

between a Tag and a constant value. When two Tags are associated to the function

block using the appropriate properties, the comparison will be performed between the

two tags. If only one Tag is associated to the function block, the comparison will be

performed automatically in respect to the constant value defined in the respective

property. The selectable comparison types are: Equal, Greater, Lower, GreaterandEqual,

LowerandEqual. The Compare function block will activate its output when the input

condition is verified (True) and the comparison result is verified.

Timer

There are two types of Timer function blocks, “TimerDelay” and “TimerLatch”. The

“TimerDelay” starts countdown when the input condition is True and activates output

when the time runs out. The countdown will be zeroed in the absence of the input

condition and as a consequence the output will be set to zero. The “TimerLatch”

activates output as soon as the input condition is True and its output will be set back to

zero when the time runs out. The countdown will be zeroed in the absence of the input

condition and as a consequence the output will be set back to zero.

Logic Gate

The Logic Gates are available as “OR”, “AND”, “NOR”, “NAND”, “XOR”, “NOR”, “XNOR”

and "PID". These gates can have two or four inputs. The output of these logic gates will

3

be activated when the input values satisfy the conditions specified by the different logic

gates.

1.3. Assigning TAGs
Assigning Tags to ports, that consent this operation, is done by using the same

procedures used for assigning tags to objects on screen. Therefore, the tags can be

selected from the Property Window or dragged directly from the Project window to the

function block of interest. In cases where the Tags are dragged onto the object, the tag

path will automatically be reported in the function block's 'Text' property.

When dragging tags to a "Compare" function block, only the first of the two object tags

will be assigned (the second tag should be assigned using the "CompareTAG" property

as shown in the above image).

1.4. Editing Logic

Logic Ribbon

When opening the Logic Editor with a click, a Ribbon will show with the various logic

function blocks and two commands to start and stop test runs of inserted logic.

 The "Start Test" command runs the logic. In this phase the values of the Input

function blocks can be forced by double clicking on the actual function block to

control the logic's correct flow.

 The “Stop Test” stops the test run. The Logic Editor will however remain active

throughout the test run.

Logic ToolBox

The toolbox containing the function blocks for inserting the logic will activate When

opening the Logic Editor. The ToolBox may also have Tabs containing screen objects,

but it is not possible to insert objects from the Screen's ToolBox or Symbol Gallery in

logic function blocks. The same goes for function blocks from the Logic ToolBox which

cannot be inserted on Screen.

1.5. Logic Resource Properties
Each Logic resource inserted in the 'Project Explorer' window can be associated with

Properties that determine its mode of functioning when run. In order to do this simply

4

open the Logic within the workspace and then modify its settings using the Movicon

Properties Window.

Execution

Cycle Clock

This parameter indicates the logic's minimum cycle time. If the execution of a logic's

cycle terminates before that of the cycle clock, the next cycle will start execution only

when the Cycle Clock time has ended as well. If the logic's cycle takes longer than the

Cycle Clock's time to execute, the next cycle will start immediately after it has

terminated. The value entered here is in milliseconds.

For performance reasons, the Logic does not wait until the 'Cycle Time'

Tag Cycle has been subscribed to the Server in order to start. Therefore,

the 'Time Cycle' tag will update after logic has started running.

Cycle Time Tag

This field is used to associate a Tag which will report the time value of the cycle being

executed. The value is expressed in milliseconds.

Current Status Tag

This field is used to associate a Tag to report the Logic's execution status. The Logic

statuses are managed in bit, whereby each individual Tag bit has a specific meaning:

Bit 0: Error. This bit turns True each time the logic goes into error.

Bit 1: Reading Tags. This bit turns True each time the Logic's Input variables are read at

the beginning of a cycle.

Bit 2: Writing Tags. This bit turns true each time the Logic's Output variables are written

at the end of a cycle.

Bit 3: Waiting For Good Tags. This bit turns True when a tag associated to the Logic

does not have a valid value. For example if a String or Array tag type has been used.

Bit 4: Cycling. This bit turns True each time a new logic cycle begins.

Bit 5: Starting. This bit turns True when the Logic is in the starting phase

Bit 6: Stopping. This bit turns True when the Logic is in the stopping phase.

Bit 7: Running. This bit turns True when the logic is running.

For performance reasons, the Logic does not wait until the 'Cycle Time'

Tag Cycle has been subscribed to the Server in order to start. Therefore,

the 'Time Cycle' tag will update after logic has started running.

The Running bit remains True for the whole duration of the logic's

running time, while the Cycling bit turns True at the impulse of a

new cycle beginning.

Thread Priority

A Logic resource can be run according to priority:

Lowest: the lowest priority

Below Normal: a below normal priority

Normal: a normal priority

Above Normal: an above normal priority

Highest: the highest priority

5

General

SessionName

When specifying a name in this field, the "Logic" will be executed in a Server connection

session that is different to the one used for the Movicon Client. If the logic runs in a

different session, the connection parameters to the Servers used will be those defined in

the Logic resource as described below. If the Logic is run in the same session as that of

Movicon Client, the "SessionName" should then be left empty and the Server

connection parameters will be the same as those used by Movicon Client which are

defined in the project's "Connection Settings" properties.

RemoveDisabledItemAfterSecs

This parameter is only managed if the Logic's "SessionName" property has been set. It

is used for setting a delay time for removing inactive OPC UA Item subscriptions. The

value used here is in seconds.

MaxCleanCount

This parameter is only managed if the Logic's "SessionName" property has been set

and is used for setting the maximum number of inactive OPC Items to be removed at

each time interval.

 UseAlwaysSecureConnections

This parameter is only managed if the Logic's "SessionName" property has been

set. When enabling this option only 'secure' connections to the Server will be used.

FastSamplingInterval

This is only managed if the Logic's "SessionName" property has been set. This field is

used for setting the update frequency of an existing variable in-use. This parameter is

passed to the Server and any eventual Driver when the Logic is loaded and the variables

go into use.

SlowSamplingInterval

This is only managed if the Logic's "SessionName" property has been set. It is used to

set the update frequency for an existing variable that is just about to go into use. This

parameter is passed to the Server and any eventual Driver when the Logic is loaded.

DisableWhenNotUsed

This is only managed if the Logic's "SessionName" property has been set. Sets Tags as

"Inactive" when not in use.

PublishingInterval

This is only managed if the Logic's "SessionName" property has been set. Tag

notification time towards Server. The value is expressed in milliseconds.

6

